38 research outputs found

    Development of Bioartificial Myocardium Using Stem Cells and Nanobiotechnology Templates

    Get PDF
    Cell-based regenerative therapy is undergoing experimental and clinical trials in cardiology, in order to limit the consequences of decreased contractile function and compliance of damaged ventricles following myocardial infarction. Over 1000 patients have been treated worldwide with cell-based procedures for myocardial regeneration. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit adverse postischemic remodelling, and improve diastolic function. The development of a bioartificial myocardium is a new challenge; in this approach, tissue-engineered procedures are associated with cell therapy. Organ decellularization for bioscaffolds fabrication is a new investigated concept. Nanomaterials are emerging as the main candidates to ensure the achievement of a proper instructive cellular niche with good drug release/administration properties. Investigating the electrophysiological properties of bioartificial myocardium is the challenging objective of future research, associating a multielectrode network to provide electrical stimulation could improve the coupling of grafted cells and scaffolds with host cardiomyocytes. In summary, until now stem cell transplantation has not achieved clear hemodynamic benefits for myocardial diseases. Supported by relevant scientific background, the development of myocardial tissue engineering may constitute a new avenue and hope for the treatment of myocardial diseases

    Nouvelle Théorie Hémodynamique Flux et Rythme Concept et applications précliniques en utilisant des nouveaux dispositifs d'assistance circulatoire Directeur

    Get PDF
    Le coeur et les vaisseaux sanguins sont directement issus de l'endothélium et dépendent de sa fonction. Le coeur ne représente pas la seule force motrice de notre système circulatoire, la plupart des stratégies thérapeutiques actuelles des maladies cardiovasculaires sont encore focalisées sur le coeur, négligeant l'ensemble du système circulatoire et le système endothélial. Par exemple, le développement de Dispositifs d'Assistance Cardiaque (DAC) est influencé par le coeur, conçu pour suivre,obéir et doit être synchronisé avec un organe malade.De nombreux signaux de nature différente sont capables d activer les cellules endothéliales : les forces de cisaillement créées par le flux sanguin parallèle à la surface de la paroi des vaisseaux, mais également les forces perpendiculaires provoquées par l étirement de la paroi artérielle par les variations de la pression et la qualité cyclique de ces forces. L activation de cellules endothéliales est due à la pulsatilité du flux mais aussi à l action de substances vasoactives et des médiateurs de l inflammation.Dans notre travail de thèse, nous proposons une nouvelle approche thérapeutique,basée sur une révision fondamentale de l'ensemble du système circulatoire: exposer les défauts de la gestion courante des maladies cardiovasculaires (MCV). Notre nouveau concept se concentre sur la dynamique des flux sanguins pour stimuler,restaurer et maintenir la fonction endothéliale, et compris le coeur lui-même. Nous avons développé et évalué une nouvelle génération de DAC pulsatiles, testée in vitro et in vivo.Pendant le déroulement de cette thèse nous avons effectué les études suivantes:1. Etude d un prototype de cathéter pulsatile. Il est testé de manière isolée dans un modèle expérimental d ischémie aiguë du myocarde et dans un modèle d hypertension pulmonaire aiguë.2. Etude d un prototype de tube pulsatile à double lumière. Il est testé in-vitro dans un circuit de circulation extracorporelle, et in vivo comme assistance ventriculaire gauche.73. Etude d un prototype de combinaison pulsatile. Il est testé sur un modèle animal présentant une défaillance aiguë du ventricule droit. Des prototypes de masques et de pantalons pulsatiles sont en développement.En conclusion, notre approche est basée sur l activation de la fonction endothéliale plutôt qu en une assistance cardiaque directe. Ce concept permet une meilleure gestion thérapeutique des maladies circulatoires et cardio-pulmonaires.The Heart is still considered as the main organ to be dealt with, in case ofcardiovascular disease. Nevertheless, the heart is not the only driving force in ourcirculatory system. In fact, the heart and blood vessels are the direct issues of theendothelium and depend on its function. Moreover, almost all current therapeuticstrategies are still focusing on the heart and neglecting the entire circulatoryendothelialsystem. For example, development of cardiac assist devices (CAD) is stillrestrained by the heart, designed to follow, obey and must be synchronized with adiseased organ.Many "signals" of different nature are capable of activating endothelial cells: the shearforces created by the blood flow parallel to the surface of the vessel wall, but alsoforces caused by stretching perpendicular to the artery wall by the cyclic pressuregradient and the quality of these forces. The activation of endothelial cells is due tothat pressurized flow dynamic forces, but also to the action of vasoactive substancesand inflammatory mediators.In this thesis we are proposing a new therapeutic approach, based on a fundamentalrevision of the entire systems: exposing those defects of current management ofcardiovascular diseases (CVD). A concept that focuses on flow dynamics to stimulate,restore and maintain endothelial function including the heart itself. This includespreliminary results of new generations of pulsatile CAD that promote endothelial shearstress (ESS) enhancement. Devices prototypes were tested.During this thesis, pulsatile devices prototypes were tested in vivo, in vitro as well aswith pre-clinical volunteers as follow:1. A pulsatile catheter prototype was tested in 2 pediatric animal models (piglets) of:acute myocardial ischemia; and acute pulmonary arterial hypertension.2. A pulstile tube prototype was tested in vitro (mock circuit) and in vivo (piglets) as aleft ventricular assist device (ongoing).3. Pulsatile suit prototypes were tested: in vivo (piglets) for acute right ventricularfailure treatment. Prototypes of pulsatile mask and trousers are currently in plannedfor pre-clinical studies.9Conclusion, Think endothelial instead of cardiac is our policy for better management ofCVD.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Recent Applications of Three Dimensional Printing in Cardiovascular Medicine

    Get PDF
    Three dimensional (3D) printing, which consists in the conversion of digital images into a 3D physical model, is a promising and versatile field that, over the last decade, has experienced a rapid development in medicine. Cardiovascular medicine, in particular, is one of the fastest growing area for medical 3D printing. In this review, we firstly describe the major steps and the most common technologies used in the 3D printing process, then we present current applications of 3D printing with relevance to the cardiovascular field. The technology is more frequently used for the creation of anatomical 3D models useful for teaching, training, and procedural planning of complex surgical cases, as well as for facilitating communication with patients and their families. However, the most attractive and novel application of 3D printing in the last years is bioprinting, which holds the great potential to solve the ever-increasing crisis of organ shortage. In this review, we then present some of the 3D bioprinting strategies used for fabricating fully functional cardiovascular tissues, including myocardium, heart tissue patches, and heart valves. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro cardiovascular drug toxicity. Finally, we describe some applications of 3D printing in the development and testing of cardiovascular medical devices, and the current regulatory frameworks that apply to manufacturing and commercialization of 3D printed products

    Finite Element Analysis Investigate Pulmonary Autograft Root and Leaflet Stresses to Understand Late Durability of Ross Operation

    Get PDF
    Ross operation might be a valid option for congenital and acquired left ventricular outflow tract disease in selected cases. As the pulmonary autograft is a living substitute for the aortic root that bioinspired the Ross operation, we have created an experimental animal model in which the vital capacity of the pulmonary autograft (PA) has been studied during physiological growth. The present study aims to determine any increased stresses in PA root and leaflet compared to the similar components of the native aorta. An animal model and a mathematical analysis using finite element analysis have been used for the purpose of this manuscript. The results of this study advance our understanding of the relative benefits of pulmonary autograft for the management of severe aortic valve disease. However, it launches a warning about the importance of the choice of the length of the conduits as mechanical deformation, and, therefore, potential failure, increases with the length of the segment subjected to stress. Understanding PA root and leaflet stresses is the first step toward understanding PA durability and the regions prone to dilatation, ultimately to refine the best implant technique

    Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct

    Full text link
    [EN] Objective: To assemble a biohybrid cardiac patch consisting of a large (5x5 cm) elastomer scaffold whose pores are filled with a self-assembling peptide (SAP) gel entrapping adipose stem cells, to be used as a novel implant in a big animal model (sheep) of myocardial infarction. The study focuses on the way to determine optimal procedures for incorporating the SAP solution and the cells in the patch to ensure cell colonization and a homogeneous cell distribution in the construct before implantation. The problems associated with the scale-up of the different procedures raised by the large size of the construct are discussed. Materials and Methods: Experiments were performed to choose between different assembling alternatives: incorporation of the SAP gel before cell seeding or simultaneous SAP and cell loading of the scaffold; surface seeding of cells or cell injection into the scaffold pores; dissemination of the cells throughout the scaffold before incubation by gentle shaking or by centrifugation. Immunocytochemistry techniques and confocal and scanning electron microscopies were employed to assess and quantify cell colonization of the material and early cell distribution. Cell concentrations and the uniformity of cellular distribution throughout the scaffold were taken as the main criteria to decide between the different alternative procedures. Results: The combination of peptide preloading, cell injection, and shaking before incubation yielded the best results in terms of greater cell density and the most uniform distribution after 24 h of culture compared with the other methods. These techniques could be scaled-up to obtain large biohybrid cardiac patches with success. Conclusions: The results obtained after the different seeding methods allowed us to establish an effective protocol for the assembly of large biohybrid patches for their subsequent implantation in the heart of a big animal model of myocardial infarct in the context of a preclinical study.The authors acknowledge the financing from the European Commission through the ‘‘Regeneration of cardiac tissue assisted by bioactive implants’’ (RECATABI) FP7 NMP3-SL-2009-229239 project. MMP acknowledges support of Instituto de Salud Carlos III with assistance from the European Regional Development Fund through CIBER-BBN initiative.Martínez Ramos, C.; Rodríguez Pérez, E.; Perez Garnes, M.; Chachques, JC.; Moratal Pérez, D.; Vallés Lluch, A.; Monleón Pradas, M. (2014). Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct. Tissue Engineering Part C Methods. 20(10):817-827. https://doi.org/10.1089/ten.TEC.2013.0489S817827201

    Elastomeric cardiopatch scaffold for myocardial repair and ventricular support

    Full text link
    [EN] OBJECTIVES: Prevention of postischaemic ventricular dilatation progressing towards pathological remodelling is necessary to decrease ventricular wall deterioration. Myocardial tissue engineering may play a therapeutic role due to its capacity to replace the extracellular matrix, thereby creating niches for cell homing. In this experimental animal study, a biomimetic cardiopatch was created with elastomeric scaffolds and nanotechnologies. METHODS: In an experimental animal study in 18 sheep, a cardiopatch was created with adipose tissue-derived progenitor cells seeded into an engineered bioimplant consisting of 3-dimensional bioabsorbable polycaprolactone scaffolds filled with a peptide hydrogel (PuraMatrix (TM)). This patch was then transplanted to cover infarcted myocardium. Non-absorbable poly(ethyl) acrylate polymer scaffolds were used as controls. RESULTS: Fifteen sheep were followed with ultrasound scans at 6 months, including echocardiography scans, tissue Doppler and spectral flow analysis and speckle-tracking imaging, which showed a reduction in longitudinal left ventricular deformation in the cardiopatch-treated group. Magnetic resonance imaging (late gadolinium enhancement) showed reduction of infarct size relative to left ventricular mass in the cardiopatch group versus the controls. Histopathological analysis at 6 months showed that the cardiopatch was fully anchored and integrated to the infarct area with minimal fibrosis interface, thereby promoting angiogenesis and migration of adipose tissue-derived progenitor cells to surrounding tissues. CONCLUSIONS: This study shows the feasibility and effectiveness of a cardiopatch grafted onto myocardial infarction scars in an experimental animal model. This treatment decreased fibrosis, limited infarct scar expansion and reduced postischaemic ventricular deformity. A capillary network developed between our scaffold and the heart. The elastomeric cardiopatch seems to have a positive impact on ventricular remodelling and performance in patients with heart failure.The RECATABI Project (Regeneration of Cardiac Tissue Assisted by Bioactive Implants) was financially supported by the 7th Framework Programme (FP7) of the European Commission. Project ID: 229239. Funded under FP7-NMP and the European Regional Development Fund (FEDER Spain).Chachques, JC.; Lila, N.; Soler Botija, C.; Martínez-Ramos, C.; Vallés Lluch, A.; Autret, G.; Perier, M.... (2020). Elastomeric cardiopatch scaffold for myocardial repair and ventricular support. European Journal of Cardio-Thoracic Surgery. 57(3):545-555. https://doi.org/10.1093/ejcts/ezz252S545555573Madonna, R., Van Laake, L. W., Botker, H. E., Davidson, S. M., De Caterina, R., Engel, F. B., … Sluijter, J. P. G. (2019). ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 115(3), 488-500. doi:10.1093/cvr/cvz010Nielsen, S. H., Mouton, A. J., DeLeon-Pennell, K. Y., Genovese, F., Karsdal, M., & Lindsey, M. L. (2019). Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biology, 75-76, 43-57. doi:10.1016/j.matbio.2017.12.001Spinale, F. G., Frangogiannis, N. G., Hinz, B., Holmes, J. W., Kassiri, Z., & Lindsey, M. L. (2016). Crossing Into the Next Frontier of Cardiac Extracellular Matrix Research. Circulation Research, 119(10), 1040-1045. doi:10.1161/circresaha.116.309916Chachques, J. C., Pradas, M. M., Bayes-Genis, A., & Semino, C. (2013). Creating the bioartificial myocardium for cardiac repair: challenges and clinical targets. Expert Review of Cardiovascular Therapy, 11(12), 1701-1711. doi:10.1586/14779072.2013.854165Bayés-Genís, A., Gálvez-Montón, C., & Roura, S. (2016). Cardiac Tissue Engineering. Journal of the American College of Cardiology, 68(7), 724-726. doi:10.1016/j.jacc.2016.05.055Shafy, A., Fink, T., Zachar, V., Lila, N., Carpentier, A., & Chachques, J. C. (2012). Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. European Journal of Cardio-Thoracic Surgery, 43(6), 1211-1219. doi:10.1093/ejcts/ezs480Castells-Sala, C., Recha-Sancho, L., Llucià-Valldeperas, A., Soler-Botija, C., Bayes-Genis, A., & Semino, C. E. (2016). Three-Dimensional Cultures of Human Subcutaneous Adipose Tissue-Derived Progenitor Cells Based on RAD16-I Self-Assembling Peptide. Tissue Engineering Part C: Methods, 22(2), 113-124. doi:10.1089/ten.tec.2015.0270Martínez-Ramos, C., Rodríguez-Pérez, E., Garnes, M. P., Chachques, J. C., Moratal, D., Vallés-Lluch, A., & Monleón Pradas, M. (2014). Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct. Tissue Engineering Part C: Methods, 20(10), 817-827. doi:10.1089/ten.tec.2013.0489Biswas, M., Sudhakar, S., Nanda, N. C., Buckberg, G., Pradhan, M., Roomi, A. U., … Houle, H. (2013). Two- and Three-Dimensional Speckle Tracking Echocardiography: Clinical Applications and Future Directions. Echocardiography, 30(1), 88-105. doi:10.1111/echo.12079Dorsey, S. M., McGarvey, J. R., Wang, H., Nikou, A., Arama, L., Koomalsingh, K. J., … Burdick, J. A. (2015). MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials, 69, 65-75. doi:10.1016/j.biomaterials.2015.08.011Chachques, J. C. (2009). Cellular cardiac regenerative therapy in which patients? Expert Review of Cardiovascular Therapy, 7(8), 911-919. doi:10.1586/erc.09.84Chachques, J. (1997). Dynamic cardiomyoplasty: clinical follow-up at 12 years. European Journal of Cardio-Thoracic Surgery, 12(4), 560-568. doi:10.1016/s1010-7940(97)00214-5Varela, C. E., Fan, Y., & Roche, E. T. (2019). Optimizing Epicardial Restraint and Reinforcement Following Myocardial Infarction: Moving Towards Localized, Biomimetic, and Multitherapeutic Options. Biomimetics, 4(1), 7. doi:10.3390/biomimetics4010007Van den Borne, S. W. M., Cleutjens, J. P. M., Hanemaaijer, R., Creemers, E. E., Smits, J. F. M., Daemen, M. J. A. P., & Blankesteijn, W. M. (2009). Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovascular Pathology, 18(1), 37-43. doi:10.1016/j.carpath.2007.12.012Ducharme, A., Frantz, S., Aikawa, M., Rabkin, E., Lindsey, M., Rohde, L. E., … Lee, R. T. (2000). Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. Journal of Clinical Investigation, 106(1), 55-62. doi:10.1172/jci8768Sieminski, A. L., Semino, C. E., Gong, H., & Kamm, R. D. (2008). Primary sequence of ionic self-assembling peptide gels affects endothelial cell adhesion and capillary morphogenesis. Journal of Biomedical Materials Research Part A, 87A(2), 494-504. doi:10.1002/jbm.a.31785Bagó, J. R., Soler-Botija, C., Casaní, L., Aguilar, E., Alieva, M., Rubio, N., … Blanco, J. (2013). Bioluminescence imaging of cardiomyogenic and vascular differentiation of cardiac and subcutaneous adipose tissue-derived progenitor cells in fibrin patches in a myocardium infarct model. International Journal of Cardiology, 169(4), 288-295. doi:10.1016/j.ijcard.2013.09.013Chachques, J. C., Trainini, J. C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM Trial): Clinical Feasibility Study. The Annals of Thoracic Surgery, 85(3), 901-908. doi:10.1016/j.athoracsur.2007.10.052Lee, H., Ahn, S., Bonassar, L. J., & Kim, G. (2012). Cell(MC3T3-E1)-Printed Poly(ϵ-caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration. Macromolecular Rapid Communications, 34(2), 142-149. doi:10.1002/marc.201200524Strub, M., Van Bellinghen, X., Fioretti, F., Bornert, F., Benkirane-Jessel, N., Idoux-Gillet, Y., … Clauss, F. (2018). Maxillary Bone Regeneration Based on Nanoreservoirs Functionalizedε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion. BioMed Research International, 2018, 1-12. doi:10.1155/2018/7380389Rohman, G., Huot, S., Vilas-Boas, M., Radu-Bostan, G., Castner, D. G., & Migonney, V. (2015). The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior. Journal of Materials Science: Materials in Medicine, 26(7). doi:10.1007/s10856-015-5539-7Spadaccio, C., Nappi, F., De Marco, F., Sedati, P., Taffon, C., Nenna, A., … Rainer, A. (2017). Implantation of a Poly-l-Lactide GCSF-Functionalized Scaffold in a Model of Chronic Myocardial Infarction. Journal of Cardiovascular Translational Research, 10(1), 47-65. doi:10.1007/s12265-016-9718-9Monnet, E., & Chachques, J. C. (2005). Animal Models of Heart Failure: What Is New? The Annals of Thoracic Surgery, 79(4), 1445-1453. doi:10.1016/j.athoracsur.2004.04.002Bellin, G., Gardin, C., Ferroni, L., Chachques, J., Rogante, M., Mitrečić, D., … Zavan, B. (2019). Exosome in Cardiovascular Diseases: A Complex World Full of Hope. Cells, 8(2), 166. doi:10.3390/cells802016

    An International Survey on Taking Up a Career in Cardiovascular Research: Opportunities and Biases toward Would-Be Physician-Scientists

    Get PDF
    Background Cardiovascular research is the main shaper of clinical evidence underpinning decision making, with its cyclic progression of junior researchers to mature faculty members. Despite efforts at improving cardiovascular research training, several unmet needs persist. We aimed to appraise current perceptions on cardiovascular research training with an international survey. Methods and Results We administered a 20-closed-question survey to mentors and mentees belonging to different international institutions. A total of 247 (12%) surveys were available (out of 2,000 invitations). Overall, mentees and mentors were reasonably satisfied with the educational and research resources. Significant differences were found analyzing results according to gender, geographic area, training and full-time researcher status. Specifically, women proved significantly less satisfied than men, disclosed access to fewer resources and less support from mentors (all P Conclusions Several potential biases appear to be present in the way training in cardiovascular research is provided worldwide, including one against women. If confirmed, these data require proactive measures to decrease discriminations and improve the cardiovascular research training quality

    Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration

    Get PDF
    [EN] Contractile restoration of myocardial scars remains a challenge with important clinical implications. Here, a combination of porous elastomeric membrane, peptide hydrogel, and subcutaneous adipose tissue-derived progenitor cells (subATDPCs) was designed and evaluated as a bioimplant for cardiac regeneration in a mouse model of myocardial infarction. SubATDPCs were doubly transduced with lentiviral vectors to express bioluminescent-fluorescent reporters driven by constitutively active, cardiac tissue-specific promoters. Cells were seeded into an engineered bioimplant consisting of a scaffold (polycaprolactone methacryloyloxyethyl ester) filled with a peptide hydrogel (PuraMatrix(TM)), and transplanted to cover injured myocardium. Bioluminescence and fluorescence quantifications showed de novo and progressive increases in promoter expression in bioactive implant-treated animals. The bioactive implant was well adapted to the heart, and fully functional vessels traversed the myocardium-bioactive implant interface. Treatment translated into a detectable positive effect on cardiac function, as revealed by echocardiography. Thus, this novel implant is a promising construct for supporting myocardial regeneration.The research leading to these results received funding from the European Union Seventh Framework Programme (Project RECATABI, 7FP/2007-2013) under grant agreement number 229239. This work was also supported by Ministerio de Ciencia e Innovación (SAF2011- 30067-C02-01), Fundació La Marató de TV3 (080330), Red de Terapia Celular-TerCel (RD12/0019/0029), Red Cardio-vascular (RD12/0042/0047), Sociedad Española de Cardiología, and Fundació Privada Daniel Bravo AndreuSoler-Botija, C.; Bago, JR.; Llucia-Valldeperas, A.; Vallés Lluch, A.; Castells-Sala, C.; Martinez-Ramos, C.; Fernandez-Muinos, T.... (2014). Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration. American Journal of Translational Research. 6:291-301. http://hdl.handle.net/10251/63949S291301

    Elastomeric Cardiowrap Scaffolds Functionalized with Mesenchymal Stem Cells-Derived Exosomes Induce a Positive Modulation in the Inflammatory and Wound Healing Response of Mesenchymal Stem Cell and Macrophage

    No full text
    A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration
    corecore